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Abstract— This paper presents the design and development of a 

neural network method for the identification of elastic drive 

systems. First, a two-mass model (2MM) system is formulated and 

a feedforward neural network architecture is developed to identify 

the inverse model of the system. The multilayer perceptron (MLP) 

is trained off-line by using the gradient back propagation (BP) 

algorithm to adjust the network weights. Next, a frequency 

analysis method is used for the identification of the 2MM system 

parameters including the resonant frequency and damping factor. 

Simulation results are used to verify the effectiveness of the 

proposed method. 
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I. INTRODUCTION 

Constrained parameters identification has been extensively 

studied in the past decades and has been widely applied in 

scientific and engineering areas, such as signal processing, 

robot control, image fusion, filter design, pattern recognition, 

regression analysis [1–4]. 

 In practical applications, these optimization problems have 

a time varying characteristics, so it is essential to solve the 

optimal solution in real time [2]. However, most of 

conventional algorithms based on general-purpose digital 

computers may not be very efficient since the computing time 

required for a solution broadly relies on the dimension and 

structure of these optimization problems. One promising 

approach for handling real-time optimization is to employ 

artificial neural networks based on circuit implementation [5–

8]. As a result of the inherent massive parallelism, the neural 

network approach can solve optimization problems in running 

time much faster than those of the most traditional optimization 

algorithms executed on digital computers [9]. 

The introduction of artificial neural networks was first 

proposed by Tank and Hopfield [10] in 1986. In recent years, 

artificial neural networks (ANN) have introduced new aspects 

to solve complex nonlinear uncertain problems by their strong 

learning ability and high ability of parallel computing. ANN 

received a lot of attention in process control, system 

identification and many other domains [6–7]. For example, 

Kennedy and Chua [11] presented a neural network which 

contains finite penalty parameters and generates approximate 

solution for solving nonlinear programming problems. Studies 

in [13-14] indicated that neural networks could be used 

effectively in identifying nonlinear systems. Their papers 

proposed static and dynamic back-propagation algorithms to 

optimally generate the weights of neural networks and to adjust 

of parameters [3]. 

The different sections of this paper are organized as follows: 

in section 2, we define the model structure of the elastic drive 

system. In section 3, we present the considered neural networks 

and back-propagation algorithm used for updating the weighs 

and bias parameters. 

Simulation results of the identification and control system 

are illustrated in section 4, and a conclusion is drawn in section 

5. 

II. MODEL STRUCTURE OF THE ELASTIC DRIVE SYSTEM 

A. System overview 

The system considered in our analysis is a special class of 

electromechanical systems with an elastic tow-mass model 

structure. It is composed of a motor inertia connected to a load 

inertia with an elastic shaft as shown in fig. 1. 

 

Fig. 1  Elastic two masses system [14] 

 

Where Cm: motor torque, Cr: load torque, Jm: motor inertia, 

Jc: load inertia, fm: motor damping coefficient, fc: load damping 

coefficient, θm: motor angular position, θc: load angular 

position, Ct: shaft torque, K: stiffness shaft 
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B. Inverse model of 2MM system 

In this section, we will present the dynamic equation by 

using motor speed and load speed instead of motor and load 

angular position. The dynamic equations are given as: 

 

𝐽𝑚

 𝑑𝑊𝑚

𝑑𝑡
= 𝐶𝑚 − 𝐶𝑡 

 

𝐽𝑐

 𝑑𝑊𝑐

𝑑𝑡
= 𝐶𝑡   −  𝐶𝑟                                               (1) 

𝐶𝑡 = 𝐾 ∫(𝑤𝑚 − 𝑤𝑐) 𝑑𝑡 + 𝛽(𝑤𝑚 − 𝑤𝑐)      

 

      To identify the block diagram of our system (fig.2), we use 

Laplace transform method. 

 

 
 

Fig. 2 2MM system block diagram 

    The load speed is usually not available for measurement. The 

transfer function between the motor torque and the load speed 

in the absence of load torque is given as: 

𝐻(𝑝) =
1

𝐽𝑚(𝑝)
[
𝑝2 + 2𝜁𝑧𝑤𝑧𝑝 + 𝑤𝑧

2

𝑝2 + 2𝜁𝑛𝑛𝑝 + 𝑤𝑛
2

]     (2) 

 

  

Where: 

ωn:natural resonance angular frequency of the system 

ωz:anti-resonance pulsation system 

𝜉𝑛, 𝜉𝑧: Damping coefficient  

 

      To keep constant the DC signal at the input of the system, 

between two instants of conversion, it is necessary to determine 

its discrete time model, it can be written as [3, 5]: 

 

𝑦(𝑘 + 1) = 𝑎0𝑦(𝑘) + 𝑎1 𝑦(𝑘 − 1) + 𝑎2 𝑦(𝑘 − 2)
+ 𝑏0  𝑢(𝑘)     (3) 

 

where k is the discrete time index, u(k) and y(k) denotes the 

system input (motor torque) and output (motor speed) 

respectively. The parameters a and b are based on the 

mechanical system parameters and the sampling period [10, 

11]. 

 

Assuming that the system represented by (eq.4) is invertible. 

i.e. there exist a function g(.) such that 

𝑢(𝑘) = 𝑔(𝑥𝑐)      (4) 
 

Where  

𝑥𝑐(𝑘) = [𝑦(𝑘 + 1), 𝑦(𝑘), 𝑦(𝑘 − 1), 𝑦(𝑘 − 2), 
          𝑢(𝑘 − 2), 𝑢(𝑘 − 1)]   (5) 

 

 

 

Fig. 3 Training configuration of MLP for identification 2MM inverse model 

[15] 

Our objective, therefore, is to design a neural network that 

performs this mapping and identified the direct model of 2MM, 

for this, we consider a neural network consisting of an input 

layer with ni neurons, a hidden layer with nh neurons and the  

output layer with one neuron (no=1). 

III. NEURAL NETWORK IDENTIFICATION OF 2MM SYSTEM 

A. Feed forward multilayer neural network 

In the last years, various neural network models have been 

developed for different applications including signal 

processing, pattern recognition and system modeling (Cho et 

al., 2008). The multi-layer perceptron with back-propagation 

learning is the most popular and commonly used neural 

network structure due to its simplicity, effectiveness and 

excellent performance in many applications that require to learn 

complex patterns (Kuo et al., 2014; Ruan and Tan, 2009). 

Multi-Layer perceptron is a feed-forward neural network with 

one or more hidden layers between input and output layer. 

Feed-forward means that data flows are in the forward 

direction, from input to output layer. MLP can solve problems, 

which are not linearly separable (Kirubavathi Venkatesh and 

Anitha Nadarajan, 2012).  

Let’s consider a multilayer feedforward network with three 

layers: an input layer with 6 neurons, one hidden layer with 



sigmoid neurons and an output layer with one linear neuron as 

shown in fig.4. 

 
 

Fig.3 Multilayer perceptron architecture [16] 

 

Let y be the input to the neural network, and u, S the output 

from output layer and the hidden layer respectively. The 

weights and biases between the output and the hidden layer are 

represented by wh and θh, while between the hidden and output 

layer are wo and θo with a desired output d, the overall sum-

squared error of the network can be written as: 

𝐸𝑝 =
1

2
 ∑(𝑑𝑝𝑘 − 𝑦

𝑝𝑘
)2

𝑘

       (6)   

and u, S, y are related by 

𝑦𝑝𝑘 = f(𝑒𝑝𝑘
𝑜 ) 

𝑆𝑝𝑗
ℎ = 𝑓(𝑒𝑝𝑗

ℎ ) 

 

Where 

  𝑒𝑝𝑘
𝑜 = ∑ 𝑊𝑘𝑗

𝑜 𝑆𝑝𝑗
ℎ + 𝜃𝑘

𝑜

𝑛ℎ

𝑗=1

 

 𝑒𝑝𝑗
ℎ = ∑ 𝑊𝑗𝑖

ℎ𝑦(𝑘 + 2 − 𝑖) + ∑ 𝑊𝑗𝑖
ℎ

6

𝑖=5

4

𝑖=1

 𝑢(𝑘 + 4 − 𝑖) + 𝜃𝑗
ℎ 

 

and f(.) is the sigmoid activation function. 

B. Neural network training algorithm:Backpropagation  

In the training phase of the MLP, the training set is 

presented at the input layer and the parameters of the network 

(weights and biases) are dynamically adjusted using gradient-

descent based delta-learning rule (back-propagation learning) 

to achieve the desired output (Gomathy and Lakshmipathi, 

2011; Barabas et al.,2011). The training process of MLP neural 

network is defined as follows:  

Step 1 – network initialization: The connection weights and 

bias of the network are initialized randomly, setting up the 

network learning rate η, the error threshold ε, and the maximum 

iterations T.  

Step 2 – data preprocessing: Data samples are usually 

partitioned into three sets: training, validation and test. The 

training sets are used for training (to adjust the weights and 

biases) the network; the validation sets are the part that assesses 

or validates the predictive ability of the model during the 

training to minimize over fitting; the test sets are used for 

independent assessment of the model's predictive ability 

(generalization performance) after training. 

 Step 3 – training network: Input the training sets into MLP, 

compute network predicted output values, and calculate the 

error E between output and the target value.  

Step 4 – updating the weights and biases: Update network 

weights and biases according to the prediction error E, making 

the predictive value of the network as close to actual values 

through a Back-propagation algorithm. 

 Step 5 – judgment of whether the end condition is met: If Eε, 

network training is stopped and go to step 7.  

Step 6 – judgment of whether an over fitting has occurred: If 

accuracy of the validation error has not been satisfied network 

training is stopped and go to step 7; otherwise, return to step 3 

to continue training. 

Step 7 – judgment of generalization performance: Run test data 

set by trained network for generalization performance 

measurement. 

IV. SIMULATION  

In this section, we conduct several experiments to 

demonstrate the effectiveness of the proposed algorithm. The 

training data-pattern used in our study is generated off-line 

from an experimental setting which represents the 2MM 

system. 

To display the results clearly, simulation is divided into two 

parts. One part presents the learning results of the neural 

network in Matlab. Another part is achieved as a numerical 

result which includes identification of parameters of 2MM 

system using frequency analysis. 

A. Training results 

The MLP consists of an input layer with 6 neurons, one 

hidden layer with 6 sigmoidal neurons and an output layer with 

one neuron. The number of neurons in the hidden layer is 

determined empirically. The optimal number is obtained by 

simulation. 

In this phase, using back propagation algorithm, the weights 

and biases are adapted by the gradient descent methodology 

and the derivatives of an error function. If the output pattern is 

different from the target output, an error will be obtained and 

then propagated backward through the network from the output 

layer to the input layer. The weights will be modified as the 

error is propagated, and the modified network will output the 

pattern that is closer to the desired output: the error between 

output pattern and target pattern is to be reduced as illustrated 

in fig 6. 



 
Fig.4 Total squared error during training. 

 

  The error approaches zero for a small number of 

iterations (10 iterations), this demonstrates the right choice of 

neural network architecture. Also, the speed and accuracy of 

neural networks are provided. 
Update network weights and biases according to the off-line 

training 

Under the same conditions, the BP algorithm is tested using any 

signal. Fig 5 shows that although the reference signal used for 

learning, the system response is very close to the desired 

response.  

 
Fig.5 NN output after training (yr,nn:neural model,ys: test model) 

These results confirm the generalization performance of neural 

networks. 

B. Identification results 
 

 The frequency response function (FRF) is, in general, a 

complex valued function or waveform defined over a frequency 

range. Therefore, the process of identifying parameters from 

this type of measurement is commonly called curve fitting, or 

parameter estimation. Authors were looking for a better method 

for doing curve fitting in a mini-computer based modal analysis 

system. This type of system is used to make a series of FRF 

measurements on a structure, and then perform curve fitting on 

these measurements to identify the dynamic properties of 

structures and systems. 

This paper presents the amplitude response of the system by the 

application of different sinusoidal signals. This procedure is 

applied with wide frequency range [0.1 Hz; 400 Hz]. Fig shows 

the frequency response of the system. 

 
  Fig.6 Frequency response of the system using NN 

 

Using the experimental results, Eq7 and Eq8, we can identify 

the 2MM system parameters. 

𝑄 =
1

2𝜉
             (9) 

𝑤𝑟 = 𝑤𝑛√1 − 𝜉2       (10) 

Where  

𝑤𝑟 :resonance pulsation 

𝑤𝑛 :natural pulsation  

𝑄 :quality factor 

 𝜉 :damping coefficient 

      

The frequency response gives the following values: 

 

𝑊𝑝 = 191.6002 𝑟𝑎𝑑. 𝑠−1 

𝜉𝑝 = 0.0912 

 

To compare our results, we should calculate theoretical 

parameters using the 2MM standardized parameters (Table.1).  

TABLE I 

STANDARDIZED PARAMETERS OF 2MM SYSTEM 

 

Jm 0.122 [s] 

Jc 0.108 [s] 

K 1507 [s-1] 

β 1.504 

 

We use the following formulas to calculate the theoretical 

parameters: 



 

𝑤𝑡ℎ = √𝑘(
1

𝐽𝑚

+
1

𝐽𝑐

) 

𝜉𝑡ℎ =
𝛽

2
√

1

𝐾
(

1

𝐽𝑚

+
1

𝐽𝑐

)                   (11) 

 

𝜔𝑡ℎ = 162.1952 𝑟𝑎𝑑. 𝑠−1 

 𝜉𝑡ℎ = 0.0809 
 

The results show that the results obtained from the ANN model 

are very close to the theoretical parameters. This confirms the 

ability of the considered ANN training off-line by the BP 

algorithm to identify the 2MM system parameters.  

V. CONCLUSIONS 

In this paper, a feed-forward neural network is designed to 

simulate a 2MM system. The used algorithm, based on the 

backpropagation method, is formulated and implemented to 

optimize the learning process of the network. The frequency 

analysis was used to identify the 2MM system parameters. The 

simulation results obtained show the effectiveness of the neural 

network model. 
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